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Water and carbon modeling of the land 
surface using remote sensing from 

 



Warmer and extreme climate + Growing population 

Impacts on water resources, food production and natural ecosystems  
 

Uncertainty in our knowledge of water responses is directly dependent on 
uncertainty of carbon responses 



Evapotranspiration (ET) estimates 

  (traditional) water balance 

  (remote sensing) energy balance 

• Radiometric 
Temp. 

• Albedo 

• Vegetation indices 

• Air temperature 

• Radiation 

INPUT 

• Meteorological data 

• Land 
parameterization 
(soil depth, land 
cover type) 



Remote sensing: spectroscopy 

Eric Brown de Colstoun 

Solar range (0.4-2.4 µm) Thermal range (5-12 µm) 

Gillespie, 2014 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑅𝑅800 − 𝑅𝑅670)
(𝑅𝑅800 + 𝑅𝑅670)

 



Relation between spectral indices and plant 
physiology: much less explored 

Balsa Blanca 
(Spain) 

Annual precipitation : 370mm 

Indicator  Spectral index 
(bands) 

Photosynthesis 
(μmol CO2 m−2 

s−1) 

Light Use 
Efficiency (g 

C MJ−1) 

Transpiration 
(mm/s) 

Conductan
ce (m/s)  

Green 
vegetation 
(LAI, fPAR) 

Normalized 
Difference 

Vegetation Index 
NDVI (800, 670) 

0.65 0.56 0.48 0.07 

Canopy water 
content 

Normalized 
Difference Water 

Index NDWI  (860, 
1240) 

0.86∗ 0.66 0.87* 0.30 

Xanthophyll 
cycle 

Photochemical 
Reflectance Index 

PRI (570, 531) 
0.12 0.28 -0.42 -0.94** 

Chlorophyll 
content 

(750, R710) 0.95∗∗ 0.88∗ 0.68 -0.09 
Carotenoids 
content 

(800, 470) 0.96∗∗ 0.84∗ 0.81 0.09 

Water stress 
Tcanopy − Tair 

(thermal) −0.90∗ −0.83 0.88* -0.64 

Water stress 
Tsoil − Tcanopy 

(thermal) −0.93∗ −0.83 0.93* -0.80 

 IRGA 6400   

Leaf physiology 

Correlations between canopy 
spectral indices and leaf physiology? 

*p<0.05, p<0.01 



Agricultural Water Innovations in the 
Tropics (AgWIT)  

Motivation: Water and carbon footprints of tropical crops exported to EU 
 
Increase crop water use efficiency  
 
Testing new strategies 
 
Biochar additions under rainfall and rainfed crops. Agricultural impacts on water 
resources? 
Evaluate soil and water management strategies via ecophysiological assessments of 
crops and quality of soil leachate 



Average annual ET (mm) condition from 2009 to 2012 

ETPT-JPL    ETTSEB    ETSTIC         ETMP 

ET ensamble 

 Four different operational approaches tested and merged 

 Minimum climatic inputs and optimization with field datasets 

Mallick et al., 2015 

Prototype Global ET based on Sentinel-3 



 

PT-JPL 
 

𝜆𝜆𝐸𝐸𝑠𝑠 = 𝑓𝑓𝑆𝑆𝑆𝑆 ∙ 𝜆𝜆𝐸𝐸𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Net radiation (Rn) partitioned based on vegetation cover  

(Beer Lambert law) 
 Canopy: c Bare soil: s 

Garcia et al., RSE 2013 

𝜆𝜆𝐸𝐸𝑐𝑐 = 𝑓𝑓𝑔𝑔 ∙ 𝑓𝑓𝑇𝑇 ∙ 𝑓𝑓𝑀𝑀 ∙ 𝜆𝜆𝐸𝐸𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Solves evapotranspiration λE Soil moisture 
constraint limiting 

evaporation 

Plant constraints 
limiting transpiration  

ETPT-JPL evapotranspiration model 

• Evolutionary assumption: ecosystems optimize carbon fixation/water losses by 
scaling canopy leaf area and light harvesting to the availability of resources. 
(Nemani & Running, 1989, Eagleson, 1986). 

• Neglects behavior of individual leaves -> canopy bulk response 
• Best among 4 global models. Deficiencies during conditions of water stress 

(Miralles et al., 2016). 

http://www.sciencedirect.com/science/article/pii/S0034425712004828#bb0095
http://www.sciencedirect.com/science/article/pii/S0034425712004828#bb0090
http://www.sciencedirect.com/science/article/pii/S0034425712004828#bb0090
http://www.sciencedirect.com/science/article/pii/S0034425712004828#bb0090


Proof of concept: Effect of soil moisture estimates into ETPT-JPL algorithm 
under extreme conditions (mean ET< 1 mm/day) 

Soil moisture controls stomatal and soil conductance to vapor. 
 

R2= 0.63 R2= 0.17 R2= 0.75 

Thermal inertia  

LST, albedo from 
Meteosat SEVIRI 

Field measured soil 
moisture (TDR) 

 

Complementary 
hypothesis:  

land-atmospheric 
coupling.Meteo data 

/VPDRH 

Flux tower: 20%  uncertainty (black dots) Garcia et al. (2013) 

ETPT-JPL evapotranspiration model 



Agoufou (Mali)
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MAE bias r 
 Algorithm n W/m2 W/m2 

 
 

MOD16 488 27.11 -15.39 0.70 
PT-JPL 276 11.53 9.55 0.75 

 

 
  

MAE bias r 
 Algorithm n W/m2 W/m2 

  
 

MOD16 877 26.72 3.41 0.60 
PT-JPL 837 15.80 -11.87 0.79 

 
Garcia et al., in prep. 

Demokeya (Sudan)
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 Proof of concept: ETPT-JPL    algorithm at extreme environment 
Sahel 

ETPT-JPL evapotranspiration model 



Temporal trends in 
evapotranspiration 

Wetland degradation? Water use from crops and 
ecosystems 

Morris et al.,2013 

Doñana Natural 
Area:  

Biosphere Reserve 

berries 

Rice 

wetlands 
Moyano et al., in prep 

 Quantified an increasing trend in water use in new berry fields and 
decreasing in wetland: Hotspots 

wetland
s 



 

TSEB 
 

Net radiation (Rn) partitioned based on vegetation cover  

(Beer Lambert law) 
 Canopy: c 

Bare soil: s 

Morillas et al., RSE 2013 

Solves Sensible heat flux H Canopy radiometric 
temperature 

Soil radiometric 
temperature 

s a
s P

AH s

T TH C
r r

ρ −
=

+
c a

c P
AH

T TH C
r

ρ −
=

λEc=Rnc-Hc λEs=Rns-Hs-G 

Assumption: flux gradient theory for calculating sensible 
heat flux based on radiometric temperature for soil and 
for vegetation.  

 

ETTSEB evapotranspiration model 



Motivation 
 Test the model in dryland sparse vegetation conditions (series and parallel) 
 Evaluate the algorithm to separate temperature into soil and vegetation 

TR composite temperature 

Ts soil temperature 

[ ] 4/1
44 )1( sccR TfTfcT −+=

ETTSEB evapotranspiration model 

TR (composite) 

Tc 

(vegetation) 

Ts 

(soil) 

Tc 

(vegetation) 

Ts 

(soil) 

Temperature Unmixing 

Numerical approach 

Input of separate 
temperatures 

 H λE 
R2 0.75-0.80 0.36-0.39 
MAPE% 25-33 74-95 
 

Robust procedure: minor differences 

in outputs 



Accurately quantifying interaction in drylands  of soil and vegetation in partially or 
sparsed vegetated areas remains challenging (Haghighi et al 2017, WRR). 

Kustas et al., 2016 

TSEB standard algorithm 

MODIS LAI 

ETTSEB evapotranspiration model 

TSEB standard algorithm 

LAI from field 

TSEB with modified 
aerodynamic resistances 

Sensible heat Latent heat 



Gross Primary production (GPP) model  
 Atmospheric CO2 absorbed by terrestrial ecosystems through photosynthesis. 

Largest carbon flux between land and atmosphere. 
Light use efficiency concept is based on Functional convergence theory: 

“Plants scale canopy leaf area and light harvesting by the availability of 
resources as a result of evolutionary processes in order to optimize their carbon 
fixation” 

(Field et al., 1991; Goetz & Prince, 1999) 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉∙ 𝑓𝑓𝑇𝑇 ∙ 𝑓𝑓𝑆𝑆𝑆𝑆 ∙ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃 

PAR 
radiation 

Max light use efficiency 

Biophysical constraints 
limiting transpiration 

and assimilation  

Monteith et al., (1977) 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜀𝜀 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃 

Light use efficiency 
Fraction of absorbed 

PAR 



Model development and testing 
 

Motivation 
Remote sensing based models of evapotranspiration and gross primary 

productivity biased to clear sky conditions 
 Include and quantify effect of diffuse radiation (Clouds, aerosols) 
Assume the biophysical constraints for evapotranspiration same as for GPP 

 

Wang, et al., 2017, AFM. 

Overcast 

Clear days 

26.46% 

Absorbed PAR 
radiation 

Max light use  

efficiency 
Multiple stresses  

Potential 
evapotranspiration 

Actual 
evapotranspiration 

Gross Primary 
Productivity 

Sorø flux site 

11 years of data! 



Light use efficiency model used to understand 
effects of diffuse radiation 

Wang, et al., 2017, AFM. 

 
Model including effects of diffuse and direct radiation improved estimates 

 

Cloudy 

Clear sky 

Data Driven 

 Path analysis 

Model 

 Global sensitivity 
analysis 

Quantify effect of 
diffuse radiation  

 Higher Water Use Efficiency with cloudy 
conditions 

Warming effect from clouds increasing 
canopy temperature (Ts) (NDVI>0.75) 



DTU high resolution mapping system for ET and GPP 

     
          

  

   
   

  
   

     
   

  

    
   

     

       
   

   
 

       

   

  

   

     

Motivation: 

Operational estimates of daily GPP and ET from UAV 

 Needed for detailed (submeter) water and carbon footprints, crop yields, 
biomass, water resources.  

Risø willow  

flux site 

25- May-2016 

Sheng et al, 2016 

Tetra MCA Cosine receptor Flir Tau2 Weather station 

Vegetation 
indices Tair 

Soil 
moistur

e 
Radiation budget Humidity 

Model inputs: 

Imaging processing 
Orthorectification and 

correction 

UAS orthophotos (hyper-spatial 
resolution cm level) 

UAS flight campaign 

Modeling 

GPP (gC/m2d)  

Latent 
heat flux 
(W/m2)  



Soil moisture using thermal UAV data: TVDI  

Liu et al.,  in prep. 

Soil moisture index 

Risø willow site 

Portable TDR: soil 
moisture 

Challenge: geometric and accurate 
radiometric corrections: <2 K and < 

20 cm  



UAS imagery validation 

• MCA reflectance validation (ASD) 

Hyperspatial mapping of water, energy and 
carbon fluxes with Unmanned Aerial Vehicles 

Four colors of tarpaulins 



Payload: calibrations of multispectral camera 

Low illumination conditions.  

Geometric calibration: retrieve intrinsic camera geometric parameters 

To improve the accuracy of image mosaicking 

Vignetting correction: homogenous illumination from the sphere 

To reduce the radiometric distortion 

Radiometric calibration: Converting digital number (DN) to radiance (L) 

Extended calibration for low illumination conditions (exposure time): 

Vignetting Correction factors (to the mean value)  The faction of gain for six channels  



Payload: the thermal infrared camera 

Flir Tau 324 (7.5-13.5 µm) 

To retrieve the land surface temperature 

Pixel wise calibration with a black body (emissivity =1) 

The accuracy of pixel-wise calibration for each pixel (RMSE and bias)  

Example of corrected 
temperature orthophoto 
Place: Risø willow flux site, DK 
Time: 25-May-2016 11:15 a.m. 
Flying altitude: 80m 

Correction for the surface emissivity and the atmospheric effects 
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Emitted radiance 
by the surface 

Atmospheric irradiance 
(downwelling path) 

reflected by the surface 

Atmospheric 
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(Upwelling path) 

Atmospheric  

transmisivity 

(H2O+other gases) 



 How to interpolate  ET and GPP between flights? 
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Motivation:  

 Operational Model ET and GPP between flights: ”Smart interpolator” 

 Soil-vegetation-atmosphere transfer (SVAT) model: exchanges of 
energy, water vapor, and momentum across soil–vegetation–
atmosphere continuum. 



Dynamic model of ET and GPP between observations 

At Soroe beech forest 

Longwave 
outgoing radiation 

Latent heat flux 

Soil moisture 

Gross Primary 
Productivity 



Summary 
 

• Land surface process are linked: we cannot understand and predict 
the hydrological cycle components in isolation but in relation to other 
land surface processes related with the energy and carbon cycles 
 

• Different types of remote sensing data provide information on the 
reflectance and emission of light in different wavelenghts useful to 
estimate energy budgets and vegetation status.  
 

• “Top down” models of evapotranspiration and GPP can incorporate  
remote sensing data with minimal calibrations or parameterization. 
Challenges in drylands with no irrigation. 
 

• UAV platforms are flexible and provide very high spatial/spectral 
resolution. The challenge is to provide consistent time series of state 
variables  

• To account for gaps between remote sensing acquisitions (cloud 
cover, revisiting time) we propose to use simple Soil Vegetation 
Atmosphere Transfer Scheme forced with climatic data. 
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